Derivatives of Exponential and Logarithmic Function Warm-up

1.
$$y = \ln 5x$$
 2. $y = \ln x^2$ 3. $y = x \ln x$

4.
$$y = (x^2 - 2)(3x + 4)$$

Derivative of Logarithmic Functions $(y = \log_b x)$

We know that $\frac{d}{dx}[\ln x] =$ _____. We want to find $\frac{d}{dx}[\log_b x]$.

Use the change of base formula to change from base b to base e, then take the derivative to find a formula:

Examples

Practice Problems

1. $y = \log_4(3x)$ 1. $y = \log_6(2x)$

2.
$$y = \log_5(x+1)$$
 2. $y = \log(x^2 + 2)$

Derivative of Exponential Functions $(y = b^x)$

Rewrite in log form:

Now take the derivative (implicitly):

Substitute $y = b^x$ Formula:

Derivatives of Exponential and Logarithmic Function Derivative of the Special Case of the Exponential Function $(y = e^x)$

Formula:

Examples	Practice Problems
$3. y = e^{-2x}$	3. $y = e^{x^3}$
$4. y = 2^{\sin x}$	4. $y = 3^{4x+1}$
5. $y = e^{\tan x}$	5. $y = e^{\cos x}$

Logarithmic Differentiation: Use the properties of logarithms to simplify the differentiation.

Examples

6.
$$y = (x^2 - 2)(3x + 4)$$

7. $y = \sqrt{\frac{x^2 - 2}{x^2 + 2}}$

8.
$$y = \frac{x^2 \sqrt[3]{7x - 14}}{(1 + x^2)^4}$$
 9. $y = \sqrt{(x - 3)(x - 4)(x - 5)}$